Microbial coexistence in a chemostat setting
ICTP Hands-On Quantitative Biology School
University of Havana, Cuba

Jacopo Grilli *!, Gabriele Micali?, Jose A. Pereiro-Morején®*, and
William R. Shoemaker!

!Quantitative Life Sciences, The Abdus Salam International
Centre for Theoretical Physics (ICTP), Trieste, 34151, Italy.
2Istituto di Ricovero e Cura a Carattere Scientifico Humanitas
Research Hospital, Rozzano 20089, Italy.
3Group of Complex Systems and Statistical Physics, Physics
Faculty, University of Havana, San Lazaro y L, Vedado, La
Habana 10400, Cuba.
4Biology Faculty, University of Havana, San Lazaro y L, Vedado,
La Habana 10400, Cuba.

November 4-15, 2024

1 Motivation

Introduction: Why study coexistence? On our planet, no single strain
exists in isolation. thousands of different organisms coexist, often within the
same ecosystem. But why is this the case? What are the fundamental principles
that shape the diversity of biological systems, promoting coexistence rather than
competitive exclusion? How can multiple strain share finite resources, and what
prevents one from dominating and driving others to extinction? These are some
of the most compelling open questions in ecology and evolutionary biology.
Understanding how different strain coexist is not only essential for explaining
biodiversity but also has profound practical implications. In medicine, for in-
stance, microbial communities play critical roles in health and disease, especially
in the human gut. In environmental sustainability, promoting coexistence can
improve strategies for conserving biodiversity and managing ecosystems. In syn-
thetic biology, designing stable multistrain consortia is crucial for applications
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such as biofuel production or waste degradation. Unraveling the mechanisms of
coexistence can thus inform better solutions to challenges in these fields.

In this lecture, we will explore how the number of resources available relates
to the number of strains that can stably coexist in a chemostat, a controlled
system where organisms grow while sharing a common pool of resources. We
will focus particularly on mutualistic and commensal cross-feeding interactions,
which illustrate how strain can depend on each other for survival. By the end
of this session, you will have the theoretical understanding and practical tools
needed to conduct experiments that probe these dynamics.

Why interdisciplinary approaches matter. Traditionally, coexistence in
biology was studied from a descriptive, observational standpoint. However, with
the integration of mathematics and physics, we can now develop models that
generate testable predictions about how populations will behave under various
conditions. By combining theoretical and experimental approaches, we move
beyond qualitative descriptions to uncover the quantitative relationships that
govern coexistence.

This lesson underscores the value of interdisciplinary approaches, where bio-
logical problems are formalized and hypotheses are tested with real experimental
data. As you progress through this course, you will experience first-hand how
mathematical models and experimentation can come together to deepen our
understanding of biological systems.

Why build a chemostat? The chemostat — a system where organisms con-
tinuously grow while sharing resources under controlled conditions — provides
an ideal model for studying population dynamics, resource competition, and
growth rates in a steady-state environment. In a chemostat, fresh nutrients
are constantly supplied while waste is removed at a constant rate, allowing the
growth rate and population density of microorganisms to be maintained over
extended periods. This continuous culture system offers precise control resource
inflow, making it particularly suited for investigating interactions and coexis-
tence dynamics in a stable, long-term environment.

In contrast, batch culture experiments, which are more commonly used, op-
erate in a closed system. In batch cultures, organisms grow in a fixed volume of
nutrients, with no fresh medium added during the experiment. Consequently,
nutrient levels deplete over time, resulting in distinct growth phases: lag, ex-
ponential, stationary, and death. Batch cultures are simpler and faster to set
up compared to chemostats. However, the interpretation of results can require
more assumptions since the temporal dynamics introduce additional complexity
to the system.

When comparing a chemostat to a batch culture system, it is important to
consider the following:

e Steady-state vs. dynamic conditions: A chemostat can maintain a steady-
state environment, while in batch cultures, conditions change continuously
as nutrients deplete and waste accumulates.



e Control over growth rate: In a chemostat, growth rates can be precisely
controlled by adjusting the dilution rate, whereas in batch cultures, growth
is dependent on initial conditions and eventually reaches a plateau.

We can compare these two experimental scenarios by considering two strain
that are competing for the same carbon source. In a batch culture, they might
coexist by consuming carbon at different rates or experiencing growth lags at
different times. These physiological factors allow one strain to dominate the
other as nutrients deplete, meaning that the strength and outcome of competi-
tion changes with time. In contrast, in a chemostat, coexistence depends more
directly on their growth rates under constant conditions. As one strain outgrows
the other, it will tend to dominate at steady-state.

The goal of this lecture. Here the aim is to demonstrate how principles
of coexistence theory can be derived from consumer-resource dynamics
using the chemostat as an experimentally-motivated system. We will start with
a one-strain one-resource system to demonstrate how classic phenomenological
models of growth (e.g., logistic) can be interpreted through the lens of consumer-
resource dynamics. From there we will increase the number of strain (S) and
number of sustainable resources (R), as well as how resources enter and exit the
system (e.g., excretion as metabolic byproducts). Below are a few important
things that these notes will not cover due to time constraints.

e Cellular death. In these notes cells "die” due to exiting the chemostat
via dilution, which is warranted if the death rate is much smaller than the
dilution rate.

e Physiology beyond the growth rate. The growth rate is a function
of physiological conditions of the cell, which in recent years have been
modeled using the proteome (recent review in [1]) and connected with
consumer-resource models [2].

e Phage. Bacteria are effectively ”consumed” by phage, which can shape
nutrient release and subsequent use [3].

e Evolution. Mutations can alter the resource preferences of microorgan-
isms. Recent work demonstrates how eco-evolutionary insight can be ob-
tained using consumer-resource models [4].

2 Chemostat dynamics with R = 1 supplied re-
source

We start by considering a chemostat comprised of one strain of density n with
one supplied resource of concentration c.
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We have chosen to use units of density/concentration so that we do not have
to keep track of an explicit parameter for chemostat volume. The parameters
are defined as follows.

e § = dilution factor, fraction of volume that flows in and out per unit time.
Units of h™1.

e Y = Yield. Units of cell density per unit resource.
e r(c) = rmaXCJrLK, the Monod growth rate. Units h™!.

While the parameters in r(c) and Y can vary from resource-to-resource, it is
useful to view them as parameters that can theoretically be genetically encoded
by the strain. In contrast, § and ¢y are parameters of the environment.

2.1 Steady-state
With the following steady-states

r(c*) =46 (2a)
n*=Y(co—c")=Yc (2b)

The last steady-state reflects the principle of mass conservation. Further-
more, there is no growth rate dependence. These solutions are subject to
the criteria

c(t) = " <c (3a)
n(t) = n" >0 (3b)

We can determine when we achieve a non-trivial cell density (n* > 0, ¢ < ¢o)
using the Monod growth rate [5, 6]
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Figure 1: a) Monod function of growth, b) chemostat illustration, c) steady-
state phases of a chemostat
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Where in the first arrow we re-arranged the equation, while in the second
arrow we have used our criteria for a non-trivial steady-state abundance. We
have also assumed that the dilution rate is small relative to ry.x to simplify the
expression. We can see from the above expression that our strain will go extinct
if ¢ is too large or ¢y too small, an outcome known as washout.

Exercise 1: Mechanism — phenomenology Often in biology we use
phenomenological models of growth that may or may not relate to mechanistic
models (e.g., consumer-resource). Use the above principle of mass conservation
along with the adiabatic assumption 0 = %% + % and the dilution rate limit
Tmax > 0 to derive Verhulst’s logistic model of growth

d”nf(1;> (5)

starting from the one-resource, one-species consumer resource model. Here
7 and K represent the growth rate and carrying capacity, effective parameters
that are functions of parameters in the consumer-resource model (e.g., §). Ask
yourself the following questions.

e There has been historical interest in the relationship between a popu-
lation’s growth rate and carrying capacity. What mechanistic parame-
ters factor into both phenomenological parameters? Does the mechanistic
growth rate rpyay only shape our phenomenological growth rate 77

e What is the steady state of the population? Argue that it is/is not stable.

e Under what parameter regime does the logistic growth equation reduce to
exponential growth?

e An analogous derivation can be performed when & > 1,R > 1. Read
through this derivation in the Appendix and convince yourself that the
system is stable.
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Figure 2: The strain with the lower ¢* is the strain that achieves the highest
rate of growth at steady-state, out-competing the remaining strain. Here the
growth rate of each strain follows a Monod function, but different parameters
alters the shape of each curves, so one strain does not necessarily maintain a
lower ¢* as § increases. This scenario also applies to the batch culture scenario,
as c(t) is depleted with time, resulting in different strains having higher rates
of growth as c is depleted.

2.2 Competition among S > 1 strains for R = 1 resource

A classic result in community ecology is that the strain that can survive at
the lowest steady-state resource concentration is the one that will survive when
competing for a single resource [7]. That is, the strain with the lowest ¢* (Fig.
2).

We can demonstrate this principle using a chemostat with two strains and
a single supplied resource.
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We again assume Monod growth rates and obtain the steady-state abundance
of strain 1.
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where ¢} here denotes the concentration of resource ¢ that strain one con-
sumes at steady-state phase. Similarly, for strain 2

5w () ®

where ¢ denotes the concentration of resource ¢ that strain 2 consumes at
steady-state. So ¢ is a function of strain-specific maximum growth rates and
Monod constants and the strain with the smallest ¢} is the one that survives.
We will now prove this result. Consider the scenario where strain one survives,
drawing the resource concentration to cj. In this scenario strain 2 has the
following dynamics

dna(c7) a
— =t = max.2———— —0 | . 9
dt T2 | T"max,2 CT T K2 ( )
‘We now ask when dnzi(:;) > (0. The conditions is
CT Tmax,2 K2
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Using Eq. 7, we get
Tmax,2 KQ (rmax 1 )
— = 1> —=|——=-1). 11
5 K\ (11)
and with Eq. 8, we find the following criterion
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This result means that the condition for strain 2 to increase in density,
and thus invade strain 1 in a chemostat, requires c5 < c¢j. The symmetry
of the equations means that strain 1 can invade when c5 > ¢j. Coexistence
can be only be obtained when ¢5 = ¢j. However, given that our strains are
indistinguishable outside of their growth-related parameters, the two strains are
ecologically equivalent and, thus, the same strain. The result is generalizable to
S > 2 strains, where the strain that leaves the lowest steady-state concentration
of resource in the environment will be the one to survive.

3 Chemostat dynamics with R = 2 supplied re-
sources

In the previous sections, we showed that increasing the number of strains while
maintaining a single resource does not permit co-existence. Now, we would like



to understand when and how co-existence between two strain is allowed. We
will consider the possibility of having two strains and two resources and deter-
mine when one strain goes extinct (i.e., dominance), both strains survive (i.e.,
co-existence), and both strains go extinct (i.e., washout). When introducing
multiple resources, we need to observe that two different categories could be
possible. Resources are often categorized as ”substitutable” (e.g., glucose vs.
succinate) or "essential” (phosphorus and nitrogen). Substitutable resources can
also be used simultaneously (i.e., co-utilized) or sequentially utilized according
to resource-preference hierarchy. Unless otherwise specified, we will be focusing
on substitutable, co-utilized resources, as they allow for the most generalizable
results.

d
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We have made the assumption that different strain consuming the same resource
have the same yield (Y11 = Y21 = Y7 and Y7 5 = Y5 2 = ¥3). This assumption is
more reasonable than assuming different resources have the same yield (e.g., the
number of C atoms varies across C sources). We will again make the assumption
that K, ; > ¢; ;(t), linearizing the Monod equation. To simplify the notation
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We can determine the steady-state resource concentrations by setting the strain
ODEFs equal to zero (and assuming nj, ny > 0). Rearranging, we get the fol-
lowing two equations

p1ac1 + paace =9 (15a)
p21c1 + p2aca =0 (15b)



which can be represented in matrix form

H11 /l12_ CT d
= 16
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and solved as

Gl 1 Tpe —pe][d (17)
cs det(M) [—p21  pa1 | [0
This result shows that steady-state nutrient levels are set by resource con-
sumption rates and the dilution rate.

We can determine steady-state abundances by repeating the above matrix
manipulation on the resource ODEs at steady-state.
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By inverting the matrices we obtain the solution
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Where we have used the steady-state solutions of resource concentration.
However, is not clear what the above results tell us about the parameter regime
where co-existence is permitted. We would like to know how co-existence de-
pends on environmental parameters {6, c?} and physiological parameters {y; ;,Y; ;}.
Using the above results we can determine the stability of solutions where we find
steady-state co-existence nj,n3 > 0. Intuitively we expect co-existence to be
more stable when strain consume different resources, a strategy known as spe-
cialists. At the other extreme, we might expect co-existence to be less stable
when two strain compete for all the resources in the environment, a strategy
known as generalists. These scenarios can be modeled as the p; ; of different
strain being highly different or similar. Once the parameters are chosen, the
stability of resource and strain steady-states can be evaluated [8].

However, instead of performing an extensive calculation, we will turn to
a graphical approach developed by Tilman to examine co-existence focusing
on the effect that strain abundance has on resource concentration [9]. First,
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we take Eq. 15, and we set the concentration of the first resource to zero,
c1 = 0, assuming that strain 1 has completely depleted this resource from the
environment. We then solve for the concentration of the second resource cs.
This gives us one point that represents the resource availability in the system
when ¢; = 0 and the strain can only grow using co. Mathematically, this results
in a point (0,6/p1,1) for strain 1 and (0,9/p9,1) for strain 2.

We repeat the process for the second resource by setting co = 0 and solve for
c1, assuming that the strain has completely depleted the second resource from
the environment. This gives us another point on the resource axis, representing
the scenario where strains are growing using only the first resource. For strain
1, this results in the point (/1 2,0), and for strain 2, the point (/2 2,0).

Now, for each strain, we have two points: one where ¢; = 0 and another
where ¢o = 0. The line between these two points represents resource combina-
tions where each strain has net growth of zero (AKA the Zero Net Growth
Isocline, or ZNGI).

e Strain 1 ZNGI: (0,5//,&1,1), ((5//1172,0)
e Strain 2 ZNGI: (0,5/M2,1), ((5//1272,0)

When we plot these points on a graph, with ¢; on one axis and ¢y on the
other axis, we can draw a line between these two points for each strain. This
line represents the resource combinations at which the strain can maintain its
population size. If these two lines intersect, the intersection represents the
steady-state concentrations of the two resources where both strains can coexist.
If the resource preferences set the lines such that the ZNGIs do not intersect,
then the strain with the lower resource requirements will outcompete the other,
an outcome analogous to ¢* when one resource is provided (Fig. 3).

But how do can we understand the effect of n; and ns on the resources using
the graphical approach? We start by writing the ODEs for resource dynamics
in matrix form

dd% iy C(f —C - Ml,l% . Mz,l%
e A —c 255 K225
—— — —
Jeny Iy Iy

Here Jeony can be viewed as the flux of resources due to environmental pa-
rameters (dilution rate and supplied concentration) while J,,, and J,, can be
viewed as the flux of resources due to strain parameters (e.g., yield, resource
consumption). Alternatively stated, the system can be parameterized such that
the environment is the source of resources and strains are the sinks. At steady-
state these fluxes are balanced if nj,n3 > 0 and can be graphically represented
in the (c1, c2) plane.

Choosing arbitrary points in the resource axes (é1,¢) where (¢; < ¢ and
¢y < 6Y), Jeny points in the direction of the supplied resource coordinates (c?,

@9). The strain fluxes J,,, and J,,, point away from supply points, the slopes of

11
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Figure 3: Examples of ZNGIs where coexistence is not and is permitted on
the resource axes. In the left figure the blue strain has a positive growth rate
in the entire region between the ZNGIs while the orange strain has a negative
growth rate, meaning that the blue strain will outcompete the yellow strain. In
contrast, the ZNGIs intersect in the right plot, meaning that there are regions
where one strain has negative growth while the other has positive and vice versa.
Graphically, this carving of the phase space ensures coexistence.

p1,2Y1 _ H22Y1
Vaurs and my = Varia:" We

see from these results that when my < 1 that ny prefers ¢; over cy. Likewise,
when mo < 1 ng prefers ¢y over cs.

To find the lines that go through our chosen points (¢1,¢é2), we again use
c2

the rise-over-run to identify the ODE g—gf =m;Z2 for each slope. We solve this

equation by performing integration and using our chosen points as the constant
poa

which can be calculated as the rise-over-run: m; =

C1

of integration, we get ca = ¢éo & The flux J,, is a tangent of co(m;)

while J,, is a tangent of ca(mg). What we now have is a way to calculate
the direction of the flux of resources due to consumption for a given set of
points (¢1, ¢2), the magnitude of which is determined by strain abundance.
By choosing arbitrary points (é1,¢é2), we see that Je,, always points in the
direction of the supplied resources (cj, ¢3)

We can now combine our resource flux results with our ZNGIs to examine
when co-existence is permitted. Setting ¢; = ¢] and é; = ¢35, we can plot the

consumption preference slopes for each strain as %C’I”i) fmer = mi%. The
Go=c}
region between these slopes for the two strains is the phase sp;ce where coexis-
tence can occur. Below one of these lines, but above the ZNGI, is the region of
phase space where both species are capable of growth, but one species is able
to outcompete the other (Fig. 4).
We note that the fixed points identified in this model are stable. This means

that the system will return to these steady-states if perturbed, and no phase

12
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Figure 4: Building off of our resource ZNGIs, we can plot lines that represent
the relative consumption rates of each strain. The space between these lines is
the region where coexistence is permitted.

transitions are observed within this model. The absence of phase transitions
implies that small changes in system parameters, such as resource availability
or strain consumption rates, will not lead to abrupt shifts in the overall behavior
of the system. Finally, while we have focused on analytically tractable models
it is worth noting that this graphical approach is also useful in that it can be
applied to a range of consumer-resource models where analytical results are not
easily obtained.

3.1 Phase space of coexistence for ”generalists” and ”spe-
cialists”

Two strain become specialists as their preference for one resource approaches
zero (p12.42,1 — 0). We see in the below plot that in this scenario the size
of the coexistence phase space approaches its maximum. In geometric terms,
the resource preferences of the two strain approach orthogonality (Fig/ 5a). In
contrast, we see that the size of coexistence phase space decreases as ji12 —
H2,2 and H2,1 — H11 (Flg/ 5b)

We can quantify the proportion of phase space where co-existence occurs for
a fixed environment (c?, ¢J, §). First, it is useful to define a steady-state flux of
each resource

Ji =6(c} = N (20a)
Js = 0(cy — e3)Yz (20b)

applying these definitions to our matrix equation for steady-state abun-
dances, we obtain

13
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Figure 5: The region of phase space where coexistence is permitted increases
as each strain specializes on a different resource. In contrast, the regime where
coexistence can occur decreases as strain resource preferences overlap, a scenario
where both strains are generalists.

" p22(nd—n))Yi  p2a(nd—n3)Ys
ny — H2,2— 11,2 H1,1—H2,1
ni _ pe(mi-nPivy + p11(n—n3)Ys
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i 2,2 g M2,1  J5
_ 2,2 —f1,2 5‘* 11— 2,1 5.*
_ Hi,2 J1 K11 J2
L p22—p12 6 H1,1—p21 0

By summing these two equations we obtain a mass conservation constraint:
ni +n} =6 1(ji + j3). Because we only have two strain, it is useful to define
strain densities and resource fluxes in terms of dimensionless fractions (similar
to how population genetics examines mutants in terms of frequencies instead of
abundances whenever possible). We define the fractions f* = nj/(n} +n3) and
g* = j7/(J7 + j3) and use your mass balance function to obtain

* * 2,2 * H2,1
ff=g————+0-g")—"— (22)
H2.2 — H1,2 H11 — M2.1
We see that each of our two terms only uses u;; parameters for a single
resource j. We can reduce the above equation further by defining a; = Z ;’ .
2J
=g +(1-yg" 23
I i RO (23)

Since f* > 0 or < 1 for there to be co-existence, we can identify the following
parameter limits

14



e a1 >1as>1 — fff <0, No coexistence, strain 2 wins
o a1 <lags <1 — ff > 1, No coexistence, strain 1 wins

e a1 >1>as0ra; <1<ag, — 0< f; <1, Coexistence

We can use these criteria to identify the resource preference parameters
where co-existence occurs. The last criterion provides two different bounds for
when co-existence occurs.

*

g (1-97)

>1> — — g5 1—g7 >1 24

Qi A T | gron + (1 —g7)ae (24a)

0¢1<1>042—>971<1+w—>g—1 919 (24b)
1— oo a; —1 (e %1 Qg

We can use our inequalities that only depend on a; and our inequalities that
depend on both «; and g} to identify the coexistence region of phase space. We
will derive the solution for vy > 1 > as. You can derive the solution for the
other inequality on your own. Under this resource inequality we derive the
following inequalities for strain frequency

l—ag

gron + (1 —gi)as >1— fgl" > ——— (25a)
a1 — (X9
¥ 1—gf 1-—
g Loy e o allzay) (25b)
aq (e a1 — Q2

So coexistence occurs when %_;;) <gi < %_;;) When different strain
consume the same resource «;, the ratio of the consumption rates, approaches 1.
In this parameter regime the region of phase space where co-existence can occur
decreases. However, when strain specialize on a given resource «; moves away
from one, increasing the range of co-existence. These bounds on niche overlap
are an example of the concept of ”limiting similarity” in theoretical ecology,
where a maximum level of niche overlap sets the bounds on co-existence [10,

11].

4 Chemostat dynamics under resource exchange

4.1 Varieties of resource exchange

So far we have only examined substitutable resources that are supplied by the
environment. For the rest of the notes we will consider the ecological effects
when resources are produced by strains. Resource exchange can occur via a
number of routes. Often researchers will categorize resource exchange by the
reciprocity of the relationship between strains. For example, say that one strain
produces another resource that it does not re-uptake for growth (e.g., acetate

15
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Figure 6: Examples of how a) commensalism, b) mutualism, and ¢) parasitism
mediated by resource exchange. Arrows represent the promotion of growth, bars
represent its inhibition.

excretion via overflow metabolism). This resource can then be used by another
strain, though the consumption of this resource by the other strain does not
necessarily impact the growth of the producer. Such interactions are known
as commensalism (Fig. 6a). Mutualisms occur when both strains benefit from
their interaction. An example could be one strain consuming a metabolite that
inhibits the growth of the other strain (Fig. 6b). In contrast, predation occurs
when one strain grows at the expense at the other (Fig. 6¢). An example could
be the degradation of complex polysaccharides in a marine environment. Both
strains require the carbon that can only be acquired by degrading the complex,
but only one strain is producing the enzymes that perform the degradation.
The production of extracellular enzymes can incur substantial energetic cost,
meaning that one strain is effectively growing at the expense of the other.

Exercise 2: Build and analyze your own model of resource exchange
Pick one of the conceptual models in Fig. 6 or build your own. Represent your
conceptual model mathematically as a system of ODEs and analyze it. Some
potential questions could be

16



What does the system look like when you take the adiabatic limit by
setting resource ODEs to zero, reducing the system to just strain ODEs?

e How many stable states are there?

What parameter regimes permit coexistence?

e What would be a viable experiment to test the predictions of your model?

4.2 Mutualism via complementary cross-feeding

The experimental portion of this course will focus on a particular types of mu-
tualism where coexistence is mediated by the reciprocal exchange of resources.
The goal is to understand 1) when and why coexistence is permissible in a
two-member community and to 2) determine how parameters chosen by the ex-
perimentor can impact coexistence. We are working with E. coli strains that
have been engineered so that they each are each unable to produce a single
amino acid, in this case methionine (AMet) and isoleucine (Alle). The strains
are inoculated in a chemostat so we are primarily interested in how the dilution
rate and straightforward manipulations (i.g., concentration of supplied AA) al-
ter the steady-state behavior of the system. A carbon source is supplied that
both strains require for growth, but each strain is relying on the growth of the
other to acquire one AA, a non-substitutable resource (Fig. 7).

Both strains require the carbon source to grow and one of two AAs. We refer
to the carbon source and two AAs collectively as "resources”. We start with the
most general model and reduce to specific cases as needed. All three resources
are supplied to the chemostat from an external source at a fixed concentration

(Met) (Ile) . . . .
(co,aq  ,ag ). Our variables are in units of concentration, as we assumed
a fixed chemostat volume. We can build a system of five ODEs. We go in
alphabetical order, specifying Ile as 1 and Met as 2. So strain 1 requires AA 1
from strain 2 and vice-versa.
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Figure 7: Conceptual diagram of a mutualistic interaction mediated by the
exchange of amino acids, a form of cross-feeding.
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dn1

E = nl(/\l(c, 0,1) — 1) ) (26&)
growth dilution
dn
dT2 =na(Na(can)— 0 ) (26b)
growth dilution
dc

i 60— 5o — nlugc)(c, as) + nzuéc)(c,al) (26¢)

input dilution

uptake
d
% = 6a§0) — da; — n1u§1)(c7 a1)+ n2j§2)(c, a2) (26d)
input  dilution uptake excretion
das (0) (2) (1)
—= =day’ — daz —nau;’ (c,a n c,a 26e
o 2 2, — MUy (¢,a2) +najy (¢ a1) (26e)
input  dilution uptake excretion

Where we have assumed that a strain does not uptake the same AA that it
excretes into the environment. We then define the update and excretion rates
as functions proportional to the growth rate. We will also assume similar yields

and excretion rates for the same resource across different strains (e.g., ¥; = Yj( ).

u(
(4)

c,a;) = \i(c,a;)/Y; (27a)
7 (c

(c,a;) = Ai(c,a;)/J; (27b)
Guessing the form of A;(c,a;) is a key assumption. Alternative forms may

be more accurate, but for analytic tractability we will use the product of two
Monod growth rates

C a;

c+ K.a; + K,

)\,L' (C, ai) = )\;jnax (28)

Similar to our linearizing assumption used earlier, we can linearize this func-
tion by observing that the second-order PDE is the first non-zero term of the
Taylor approximation for the growth rate around c, a; = 0.

9%\ \max -
Ai(c,aq) ~ L =t cca; = N - ca; 29
z( l) acaai ¢,a;=0,0 KCKai 7 7 7 ( )
where we have defined S\Z = % Because our main observable in the

experiment is the abundance of strains, not resources, we want to reduce our
system of equations into two ODEs of strain dynamics. This way we can under-
stand how AA supply and dilution rates alter the system. We will accomplish
this using the same approach you used in Ex. 1. We first obtain the following
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mass constraints at steady-state, which are valid over timescales t > 6!, the
adiabatic approximation used in Ex. 1

de 1 dny 1 dno B o mitmng

a e Tva o V7ese Y. (30a)
da1 1 dnl 1 dng 0 ny U»)
Ly T ST =a) — — 30b
T T TR A Tl B T (30b)
d 1d 1d

G2 2 Mg g, —g0- 2T (30c)

At Yo dt Jo dt

Our system is constrained such that concentrations must be > 0 for coexis-
tence to occur. This constraint forms the region where growth is permitted in
the phase plane, following

ny <Y.l? —ny (31a)
ni
N9 Z Jl (Y,l — a?) (31b)
ng <Y, (ag + nl) (31c)
Jo

We then use our functions of resource concentration to reduce our our system
to two ODEs

1 dny =~ 0o M1 N2 o M1 N2
—— = - - — ——=+—=—]-94 2
n dt <C Y, Y) (“1 v T (32)

1 an N 0 ny N9 0 Up) ny
n2dt)\2<CYCYVC><a2Y2+J2)5 (32b)
In this experiment (we believe) that the growth of the strains is primarily lim-
ited by AAs rather than carbon. This assumption corresponds to the parameter
limit n; < Yo" (relaxing this assumption results in the sign of the per-capita
growth-rate being density-dependent, an ecological phenomenon known as an
Allee effect [12, 13]). Pushing forward, we obtain

1 dnl T 0 0 niy )

— a3 SR

T 1 <a1 Y + Jl) (33a)
1 dTLQ 1 0 0 n2 1

n di = Ao <a2 Y + 7 ) (33b)

By setting the above derivatives to zero we obtain our two nullclines

§ ny
ny=J | = —a0+1> 34a
5= (5 -t + (310)
1) ni
ny=-Yy | —— a01> 34b
s= v (5o -5 (310)



These nullclines exactly match the region where growth is permitted when
the dilution rate is zero (Eq. 31), a parameter regime where the model no longer
represents a chemostat and instead represents batch culture. If we repeat the
above nullcline calculation for each strain when it is dominant, we obtain the
steady-state density in the absence of the other strain, n} = Y; (a? _ ﬁ)

Our solution becomes

* Jl * *

No = 71 (nl — nl/Q) (35&)
* }/’2 * *

Ng = 727741 + n2/1 (35b)

Similar to our previous two-resource, two-strain derivation, the intersection
of our nullclines tells us abut the equilibria of the system. We find this inter-
section by setting our two equations equal to each other and solving for each
strain.

,(JIJQTLT/Q -+ YlJQTL;/l)

ni = YYs T (36a)
—(J1J27’L* + Y5 Jint )
ng = 2/1 1/2 (36D)
1Yo — J1J2

Since strain densities must be positive, this point can only occur in the
positive quadrant of the phase plane. Using this condition, we examine the
intersection. The denominator of both equations can be interpreted as the
difference between resource uptake and resource excretion. When Y1Ys < J;Js
the denominator is negative, making both steady-state abundances positive so
coexistence is permitted. This is the parameter regime where growth is limited
by the inflow of resources into the cell rather than their production by the
reciprocal strain. However, when amino acids are not supplied (a? = 0) we
find that nj /2711; n < 0, making the denominator positive. So coexistence is
permitted in the absence of supplied amino acids if Y1Ys > Jy.J5

We can visualize this result as a phase plane, allowing us to see how the
intersection must lie within the resource boundaries set by Eq. 31 (Fig. 8).

The ratio of abundances under coexistence can then be derived as

ni _ Y1Y2J2/\:1 + Y1J1J2)52 (37)
ny  YaoJiJod + Y1Yadi Ao

So, there is no dependence of the ratio of steady-state abundances on the
dilution rate. That is, you should expect no relationship between these two
quantities if the above model provides a reasonable description of the system.
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Figure 8: Phase diagram of the scenario where zero AAs are not externally
supplied, only secreted by strains. The dashed lines represent the region where
growth is permitted (Eq. 31).
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Exercise 3: Non-reciprocal cross-feeding In this course you will manip-
ulate § with a{, a9 = 0. Consider the scenario where one AA is supplied (a$ > 0
and a3 = 0). You can assume here that only one strain consumes the excreted
AA (ie., four ODEs: two for strains, one for carbon, one for AA). Ask yourself
the following questions:

e In our complementary cross-feeding model we assumed the parameter limit
n; < Y,c?, which we believe accurately represents the experiment. Why
is this assumption violated when one of the strains does not rely on the
other?

e Does the relationship between Z—l and ¢ change?
2
e If so, what is its mathematical form?

o Ask yourself whether we would be able to experimentally detect this re-
lationship in the chemostat given that you are using agar plate counts

where the window of resolution is 0.005 £ =+ < 0.995. Identify a param-
2

. n . . . .
eter regime where 1 falls within our window of resolution.
2

Appendix

Consumer-resource — generalized Lotka-Volterra

We often work with generalized Lotka-Volterra models of community dynamics,
phenomenological models that do not explicitly consider resources. How do
these models relate to consumer-resource dynamics? We find out through the
following derivation. We start by considering an environment with S strains
and R resources.

dn; i
i
= i jCiMg — Oy 38a
dt Z“W N (382)
J=1 Dilution
—_——
Growth
de e S
J 0 J
= (¢ —¢) _72 M T (38b)
dt { ) Y, -
i=1
Input and dilution — ——
Consumption

We will use the adiabatic approximation to solve for the stationary re-
source concentration. This assumption does not qualitatively change the results,
though the stability of the full system has been examined [14].

&

o= . (39)
S
o1+ %yj D i M jm
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We plug this stationary value into our ODE for strain dynamics.

dn; s N
e Z“W cini — on; (40a)

Jnl

1
1+ 55~ Zi/:l it 5 Mir

R

R

Z Hi T C; (1 5Y Zﬂz ,J"%) —on; (40c)
2

Q

J =1

0
C.

i § €5 — )—§ ning Y ﬁ#z;jﬂi',j (40d)
i j J

- Z Qg 4/ TV TG (406)

Where we have used the first order Taylor expansion of H% ~ 1—x and
collected constants into the effective growth rate and competition coefficient pa-
rameters. We now have our generalized Lotka-Volterra with mechanistic com-
petition coefficients in the matrix A.

This value n} is the global fixed point of the gLV equation. We can prove
this using a Lyapunov function, a scalar function that can be used to establish
stability. Lyapunov functions A are functions with the following properties

o A(n;) > 0 for n; #n}
e A(n?) =0

. dt<0

These functions allow us to determine stability without solving the actual
equation! Disadvantage: no general method for constructing these function

S S
A= Z {ni(t) - n;‘m”;g)] - Z Ai(t) (41)

By plotting each term A\s(t), we demonstrate that A\ (¢) has a single minimum
at ny.
Let’s look at the derivative
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AN N [dn;  nldng
dt:zl_:_dt_nidt] (422)
S -]. dnz «
= z; Tt (ni(t) —n; )} (42b)
S T S
= Z (fis — Z As,smir (8)) (ni(t) — nf)] (42c)
=— Z i (ni(t) —ng)(ni(t) —ny) (42d)
= - Z (STJ/Z Z pa, g (i (8) — ni)(ni(t) —ny) (42e)
R CQ ’ S 2
=-> ﬁ ( 75 (ni(t) — nf)) (42f)
j=1""7 \o=1
<0 (42g)

where we have used the property that the products of all pairs in a matrix
is equal to the square of the sum of all entries in the matrix. So A decreases
until n;(t) = n, the global attractor, if n > 0. This derivation largely follows
the derivation in Chesson [15], the difference being that in MacArthur’s original

model resources were self-renewing. Ie., dc; (1 — ———2—— ) instead of
’ J carrying capacity

50?. All important results examined above (e.g., stability) are equivalent for
these two formulations [16]. Additional information about how different forms
of resource inflow lead to qualitatively equivalent results can be found in the
literature [17].

These above results pertain to the stability of the system. What about its
feasibility, the results requiring positive abundances? The stable result is equal
to the feasible result if R > S. This criterion can be viewed as the ecosystem
only allowing at-most one strain per-niche, also known as the ecological exclusion
principle. If this principle holds and the matrix A is invertible, we can calculate

. . . * _ S -1~
the stationary abundance of a given strain as nj = > 5 a; ;i flir.
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