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1 Introduction

1.1 The generalized Lotka-Volterra model

Historically, the first mathematical model introduce to describe the dynamics
of an ecological system was put forward in the 1920s by Lotka [16] and Volterra
[28] for a predator-prey system. In the case of one predator and one prey this
well-known model prescribes that

ẋ = x(α− βy) (1a)

ẏ = y(γx− δ) , (1b)

where x(t) is the prey population at time t and y(t) is the predator population.
The equations are written making the (unreasonable) assumption that preys
grow exponentially with rate α for an unlimited amount of time when there
are no predators; furthermore, in absence of preys the population of predators
decays exponentially with rate δ, and β and γ are the parameters representing
the effect of predators on preys and vice versa. The model assumes the law of
mass actions, i.e. that these effects are proportional to the product of the two
populations.

Eqs (1) can be easily generalized to a system of k preys and k predators:

ẋi = xi

αi −
k∑

j=1

βijyj

 (2a)

ẏi = yi

 k∑
j=1

γijxj − δi

 . (2b)

The dynamics of this system has been studied extensively (see, e.g., [24, chpt.
3]), and can either exhibit unstable fixed points or oscillating solutions.

It is possible to generalize equations like (1) and (2) for systems with any
type of interaction, for example competition and mutualism. The starting point
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Figure 1: Solution of the logistic growth equation (3) (red curve) with N(0) =
0.1, r = 1.5 and K = 10. When it is small, the population grows exponentially
(for comparison, the blue dashed curve is N(t) = N(0) exp(rt)), and in the end
it saturates to the carrying capacity K (grey dashed line). Inset: Same plot
with logarithmic scale on the y-axis

is assuming that each species’ population, in absence of other species, follows a
logistic growth equation, i.e.:

Ṅ = rN

(
1− N

K

)
, (3)

where N(t) is the population. Any role played by the resources is absorbed by
the parameters r and K, which are respectively the intrinsic growth rate and the
carrying capacity of the species, i.e. the maximum population that the species
can reach in the system. The behavior of the nontrivial (i.e., N(t) ̸= 0) growing
solution of Eq (3) is shown in Figure 1: after an initial quasi-exponential growth
phase, the population saturates to the carrying capacity K. In fact, when the
population N is small (N ≪ K) the second term in the parentheses in Eq (3)
is negligible (N/K ≈ 0), and thus Ṅ ∼ rN ⇒ N(t) ∼ exp(rt). On the other
hand, when N ≈ K the term in the parentheses is small (1 − N/K ≈ 0) and
Ṅ ∼ 0, i.e. the population saturates to K. If the initial condition was larger
than the carrying capacity, i.e. N(0) > K, the term in the parenthesis in Eq (3)
would be negative, and the population would decay towards K.

If we generalize Eq (3) to a system of S species, each population Ni will
have its own intrinsic growth rate ri and its own carrying capacity Ki. We can
then include inter-species interactions in the picture using an approach similar
to the one used in the Lotka-Volterra equations for predator-prey systems, i.e.
Eqs (2). This means that we assume that the effect of species i on species j
is proportional to the product of the two populations. In other words, we can
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write:

Ṅi = riNi

1− Ni

Ki
+
∑
j ̸=i

αijNj

 , (4)

where αij are called competition coefficients (with αii = 0) and the matrix
A = (αij)i,j∈{1,...,S} is called interaction matrix. The sign of the competition
coefficients αi,j determines the nature of the interaction between species i and
j:

• If αi,j < 0, then if one species’ population grows considerably it will
decrease the other species’ growth. This is the case, for example, of com-
petition for common resources: when a species grows a lot, it will consume
more resources and therefore limit the growth of other species

• If αi,j > 0 the interaction is cooperative: if one species’ population grows
considerably, it will produce more metabolic by-products that can help
other species grow

In general the interaction coefficients do not need to be symmetric (i.e., αi,j =
αj,i); when that happens and their sign is positive, the interaction between
species i and j is called mutualistic (i.e., both species benefit from the interac-
tion), while if they are not symmetric the interaction is called commensalistic.

If we redefine the interaction matrix so that αii = 1/Ki, Eqs (4) can be
simplified to:

Ṅi = riNi

(
1 +

S∑
i=1

αijNj

)
, (5)

which are the generalized Lotka-Volterra equations in the literature. Similarly to
logistic growth in Eq (3), this model only describes the dynamics of the species’
populations and it contains no explicit information about resource dynamics:
any role played by the resources is again absorbed by the parameters (in this
case ri and αij). This makes the model relatively easy to study mathemati-
cally (especially if the interaction coefficients are symmetric), and in fact the
mathematical properties of Eqs (5) have been explored extensively in the liter-
ature, and they are still commonly used to describe microbial ecosystems. It
has been shown that any system described by the generalized Lotka-Volterra
equations has very rich dynamics, exhibiting from fixed points to limit cycles
and attractors [27, 14, 10, 15, 11, 12, 13].

The mathematical tractability of Eqs (5), however, is balanced by the very
limited predictive power of the model. In fact, while ri and Ki can be measured
by observing each species growing in isolation1, the interaction coefficients αij

are completely unknown, i.e. there is no way of knowing their value but fit-
ting them against data after an observation is made. The model would gain in

1In principle, however, there is nothing that guarantees that a species’ ri or Ki remains
unaltered when it interacts with other species.
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predictive power if there were some additional hypotheses relating the competi-
tion coefficients αij with some measurable quantities, but this does not always
happen.

Even if we neglect this last point, there is still a bigger issue with Eqs
(5): the generalized Lotka-Volterra equations model inter-specific interactions
as pairwise, i.e. species interact with each other only in couples. This means that
this model cannot describe higher order interactions [3], which have been ex-
tensively studied in the past and are known to occur ubiquitously in ecosystems
[2, 5, 29]. It is now known that including higher-order interactions into models
of ecological communities can improve our ability to predict experimental data
[20], and that they have a stabilizing effect on systems that would otherwise be
unstable [9]. Since microbes have numerous different ways with which they can
interact with each other, a model that can only describe pairwise interactions
is destined to miss many crucial aspects of such systems, and therefore will be
unable to correctly describe them [21].

For a comprehensive discussion of the assumptions and limitations of the
generalized Lotka-Volterra equations, see Gonze et al. [8].

1.2 The consumer-resource model

The inability to use the generalized Lotka-Volterra equations to satisfactorily
describe experimental data on competition between species encouraged scientists
to find different ways to model competitive systems. A new approach in this
direction was pioneered by Robert MacArthur [17, 19, 18], who introduced what
would be later known as the consumer-resource model [6].

The main difference between the generalized Lotka-Volterra and this ap-
proach is that the consumer-resource model does not only describe the dynam-
ics of the species’ populations, but also of the resources’ abundances. In other
words, the main idea of the consumer-resource model is to write two coupled
systems of differential equations:

ṅσ = fn(nσ, {ci}) σ = 1, . . . , NS (6a)

ċi = fc({nσ}, ci) i = 1, . . . , NR , (6b)

where nσ is the population of species σ, ci is the abundance2 of resource i, NS

is the number of species present in the system and NR the number of resources.
In this case, therefore, we are writing explicitly that the interaction between
different species is not direct as in Eq (5), but is “mediated” by the resources.

What we need now are assumptions and hypotheses so that we can write
explicitly the right hand sides of Eqs (6). We assume that species σ uptakes
resource i with a given rate3 nσJσi, and that this uptake rate contributes with a

2Alternatively, nσ and ci can be interpreted, respectively, as the population density of
species σ and the concentration of resource i.

3From our definition, Jσi is the resource uptake rate per unit population (or population
density).
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term gσ
(i) = viJσi to the total growth rate4 gσ =

∑
i gσ

(i) of species σ. We also
assume that the (abiotic) resources are being supplied with constant rates5 si
and that all species have an intrinsic mortality rate δσ. This way the equations
of the consumer-resource model are written as:

ṅσ = nσ

(
NR∑
i=1

viJσi − δσ

)
(7a)

ċi = si −
NS∑
σ=1

nσJσi . (7b)

The parameters vi are generally called resource values, because they measure
how efficiently the uptake of each resource is translated into growth and therefore
how “valuable” they are.

The simplest approach to write explicitly the expression of Jσi could be
to assume that it is proportional to the resource concentration, i.e. Jσi ∝ ci.
This is certainly a reasonable assumption if the resource is scarce, but becomes
unreasonable when its concentration becomes high, since no living being can
eat or uptake an unlimited amount of nutrients. Therefore, we need to write
Jσi ∝ ri(ci), where ri(ci) is a function that is linear for small values of ci and
saturates at high ci, and that is also monotonically increasing. The choice that
is generally made when describing microbial populations is to use the so-called
Monod function:

ri(ci) =
ci

Ki + ci
, (8)

which was introduced by Jacques Monod in the 1940s from his studies on mi-
crobial growth [22, 23]. The parameter Ki is called half-saturation constant
or affinity constant for resource i, and represents the resource abundance (or
concentration) at which the growth rate of the microbial species is half the max-
imum one.

4Notice that the way we are writing gσ implies that the NR resources are substitutable, i.e.
the uptake of either one of them is sufficient for growth. In general, microbes need several
different essential resources to thrive, i.e. the uptake of all of them is necessary for growth
(and in this case we would have written gσ , for example, as the product of the gσ(i) instead
of their sum). In particular, bacteria like Escherichia coli need supplies of carbon, nitrogen,
phosphorus and other substrates in order to be cultured in the lab. What is normally done
in experiments, however, is that all essential resources except one are supplied in excess, and
the effects of the limiting resource on microbial systems are studied. Generally speaking, the
limiting resource in experiments involving bacteria is the carbon source: in this case, microbes
are cultured in media with high concentrations of compounds containing nitrogen (e.g., am-
monium salts), phosphorus (e.g., phosphates) etc., and then different sugars or carbohydrates
(i.e., the carbon sources) are added to assess their effect on the system.

5If we were considering biotic resources, the supply rates would not be constant and would
describe how resources grow. For example, we could use a logistic growth term, i.e. si ∝
ci(1− ci/κ).
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Resource 1 Uptake rates

...

Species σ

Total growth
rate

...
Resource NR

Figure 2: Assumptions that we have used to write the consumer-resource model,
i.e. Eqs (9). The specific resource uptake rates Jσi are proportional to the Monod
function ri(ci) = ci/(Ki + ci) through the metabolic strategies ασi. Every
resource uptake rate is then converted into a growth term gσ

(i) that contributes
linearly to the overall growth rate gσ =

∑
i gσ

(i)

Therefore, we can write the equations of the consumer-resource model as
follows:

ṅσ = nσ

(
NR∑
i=1

viασiri(ci)− δσ

)
(9a)

ċi = si −
NS∑
σ=1

nσασiri(ci) . (9b)

The parameters ασi are called metabolic strategies, and each one measures how
much species σ is using resource i for growth. The main assumptions used to
write these equations are sketched in Fig. 2, while a schematic representation
of the model is given in Fig. 3.

The consumer-resource model has two main differences with the generalized
Lotka-Volterra approach. The first one is the fact that we can now express
the growth rate of each species as a function of resource availability: while in
Eqs (5) we are assuming that every species has a fixed intrinsic growth rate, in
Eqs (9) the growth of species σ does not happen at a fixed rate, but depends
explicitly on how abundant resources are in the system. The second one, as
already stated, is the fact that resource dynamics is explicitly modeled in this
case. This makes Eqs (9) less easy to study mathematically, but with the
advantage that now the mechanism of competition between species is modeled
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Figure 3: Schematic representation of the consumer-resource model as written
in Eqs (9).

correctly: if the population of one species increases, the uptake term in Eq (9b)
decreases the amount of available resources, and therefore the other species will
be limited in their growth (since ri(ci) is monotonic). Notice that this means
that the inter-specific interactions in consumer-resource systems are naturally
of the highest possible order (i.e., all species interact simultaneously with all the
others) and not just pairwise, since an increase in only one species’ population
will have repercussions on the whole system.

2 Middle half-hour of consumer-resource tuto-
rial

- Use one species one resource to introduce the idea that CR models provide
mechanistic definitions to phenomenological models

- Repeat procedure for two species to resources, arrive at LV and look at
competition vs. co-existence (Tillman)

- Many species many resources

2.1 One species one resource

Start with a chemostat model, one species one resource
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dn

dt
= r(c)n︸ ︷︷ ︸

Growth

− δn︸︷︷︸
Dilution

(10a)

dc

dt
= δc0︸︷︷︸

Input

− δc︸︷︷︸
Dilution

− r(c)
n

Y︸ ︷︷ ︸
Consumption

(10b)

• δ = dilution factor, fraction of volume that flows in and out per unit time

• Y = Yield, # cells per unit resource

• r(c) = rmax
c

c+K , Monod equation

At steady-state, r(c∗) = δ, effective generation time τ∗ = δ−1. No depen-
dence on c0!

Steady-state when strain is eating most of the resource c∗ ≪ c0 (often the
case)

0 = δc0 − δc∗ − r(c∗)
n∗

Y
(11a)

= δc0 − δc∗ − δ
n∗

Y
(11b)

Gives us n = Y c0 − c∗ ≈ Y c0
No growth rate dependence! Because c∗ adjusts until r(c∗) = δ
We can get back phenomenological models of growth using 1) the principle

of mass conservation n
Y + c = c0 2) and in the limit where dilution rate limit

δ ≪ rmax

1) Take the derivative of the mass conservation equation for total biomass
B

1

Y

dn

dt
+

dc

dt
= δ(c0 − c− n

Y
) ≡ dB

dt
(12)

The dynamics of the system are fast (adiabatic limit), so we can treat the
derivative dB

dt as≈ 0 and solve the remainder to identify the constraint c = c0− n
Y

2) Next, if we set δ ≪ rmax, we decrease c∗. If we can push c∗ down we
can reduce it so that c∗ ≪ K, allowing for the growth rate to be linearized
r(c∗) = rmaxc

∗

K , giving us

dn

dt
= n

rmax

K
c0(1−

n

Y c0
)− δn (13)

Rearranging terms, we can define the growth rate and carrying capacity of
Verhulst’s logistic growth equation

8



r̃ =
rmax

K
c0 − δ (14a)

K̃ =
(rmax

K
c0 − δ

)
· Y K

rmax
= r̃

Y K

rmax
(14b)

dn

dt
= nr̃

(
1− n

K̃

)
(14c)

This equation defines the phenomenological parameters of the logistic growth
equation in mechanistic terms!

2.2 Many species

Let’s find a mechanistic view of the Lotka-Volterra equation. What we examined
above is a version of what’s known as a consumer-resource model. Introduced
through a series of papers

- Mechanistic competition coefficients via heuristic arguments. MacArthur
and Levins 1967, Amer. Nat. - Mechanistic competition coefficients via ana-
lytic methods. MacArthur 1969, PNAS - Fully introduced. MacArthur 1970,
Theoretical Population Biology

and
- summarized by Chesson, 1990, Theoretical Population Biology
Two main features we will discuss
1) Derive mechanistic competition coefficients using separation of timescales

(adiabatic approximation)
2) Demonstrating global stability via Lyapunov functions

2.3 Many species one resource

When we have two species and one resource only one species can survive at
steady-state. This is because steady-state solutions δ = r1(c

∗) = r2(c
∗) cannot

be simultaneously satisfied unless species have equal growth rates. Which,
in the context of this model would mean there are no meaningful differences.
Instead, the species with the lowest steady-state resource requirement, min[c∗i ]
wins out.

If species 1 wins, species 2 goes extinct, so at steady-state

dn1

dt
= n∗

1(r1(c
∗)− δ) (15a)

= 0 (15b)

→ c∗1 = K1

(
δ

rmax,1 − δ

)
(15c)

If we use this c∗1 value in our requirement that dn2

dt < 0, we get the following
inequality.
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dn2

dt
= n2

(
rmax,2c

∗
1

K2
− δ

)
< 0 (16a)

→ c∗1 < c∗2 (16b)

This is known as Tilman’s c∗ rule.

2.4 Many species many resources

It is easier to show how you get the Lotka-Volterra equation from the CR when
resources are formulated as self-renewing as opposed to the chemostat formu-
lation. All important results for this tutorial (e.g., stability) are equivalent for
these two formulations. But differences exist and you can learn more in

- Cui, Marsland, and Mehta, PRL, 2020 - Supplement: Marsland, Cui, and
Mehta, Am. Nat., 2020

We have NS species and NR resources.

dnσ

dt
=

NR∑
i=1

rσ,icinσ︸ ︷︷ ︸
Growth

− δσnσ︸ ︷︷ ︸
Maintenance/death

(17a)

dci
dt

= µici

(
1− ci

κi

)
︸ ︷︷ ︸

Self-renewing growth

− ci
Yi

NS∑
σ=1

rσ,inσ︸ ︷︷ ︸
Consumption

(17b)

• κi = carrying capacity of resource

• µi = growth rate of resource

Using adiabatic approximation, we solve for the stationary resource concen-
tration

c∗i = κi −
κi

µiYi

NS∑
σ=1

rσ,inσ (18)
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dnσ

dt
=

NR∑
i=1

rσ,ic
∗
inσ − δσnσ (19a)

=

NR∑
i=1

rσ,inσ

(
κi −

κi

µiYi

NS∑
σ′=1

rσ′,inσ′

)
− δσnσ (19b)

=

NR∑
i=1

(rσ,iκi − δσ)nσ −
NS∑
σ′

nσnσ′

NR∑
i=1

κi

µiYi
rσ,irσ′,i (19c)

= r̃σnσ −
NS∑
σ′

ασ,σ′nσnσ′ (19d)

We now have our generalized Lotka Volterra with mechanistic competition
coefficients in the matrix A. If our matrix A is invertible we can calculate the
stationary size of a given species as n∗

σ =
∑NS

σ′ α−1
σ,σ′ r̃σ′ .

This value n∗
σ is the global fixed point of the gLV equation. We can prove

this using a Lyapunov function, a scalar function that can be used to establish
stability. Lyapunov functions Λ are functions with the following properties

• Λ(nσ) > 0 for nσ ̸= n∗
σ

• Λ(n∗
σ) = 0

• dΛ
dt ≤ 0

These functions allow us to determine stability without solving the actual
equation! (Any other reasons?). Disadvantage: no general method for con-
structing these function

Λ =

NS∑
σ

[
nσ(t)− n∗

σ − n∗
σln

nσ(t)

n∗
σ

]
=

NS∑
σ

λσ(t) (20)

Plot each term λs(t), demonstrate that λs(t) has a single minimum at n∗
σ.

Let’s look at the derivative
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dΛ

dt
=

NS∑
σ

[
dnσ

dt
− n∗

σ

nσ

dnσ

dt

]
(21a)

=

NS∑
σ

[
1

nσ

dnσ

dt
(nσ(t)− n∗

σ)

]
(21b)

=

NS∑
σ

[
(rs −

NS∑
σ′

As,s′nσ′(t))(nσ(t)− n∗
σ)

]
(21c)

= −
∑
σ,σ′

Aσ,σ′(nσ′(t)− n∗
σ′)(nσ(t)− n∗

σ) (21d)

= −
NR∑
i=1

κi

µiYi

∑
σ,σ′

rσ,irσ′,i(nσ′(t)− n∗
σ′)(nσ(t)− n∗

σ) (21e)

= −
NR∑
i=1

κi

µiYi

(
NS∑
σ=1

rσ,i(nσ(t)− n∗
σ)

)2

(21f)

≤ 0 (21g)

where we have used the property that the products of all pairs in a matrix
is equal to the square of the sum of all entries in the matrix. So Λ decreases
until nσ(t) = n∗

σ, the global attractor, if n∗
σ > 0.

3 Connecting the consumer-resource model with
physiology: the consumer-proteome-resource
model

3.1 Generalization of the proteome-growth relationships

Our starting point are the proteomic growth laws [26]. They will be discussed
extensively in a separate tutorial, so here is just a very quick primer. These
laws are simple phenomenological relationships between a species’ steady-state
growth rate and the way its proteome is ”allocated” to different functions. In
the simplest approach, we can assume that a microbial species (e.g., E. coli)
is allocating a fraction φP of its proteome to nutrient uptake and metabolism,
and a fraction φR to ribosomes and all the affiliated proteins. In other words,
the fraction φP contains all the proteins that convert nutrients (like sugars)
in amino acids and precursors of protein synthesis, while φR contains all the
proteins that convert these precursors into proteins. From experiments it turns
out that there is also a third fraction φQ, is called ”housekeeping” fraction,
that is responsible for all essential functions that are not covered by φP and
φR. By definition, then, φP + φR + φQ = 1 (the sum of these three fractions
must be one). Experimentally, it turns out that when we change the growth
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Figure 4: Proteome subdivision introduced by Scott et al. [26].

rate of E. coli by using different carbon sources (i.e., using mannose or acetate
instead of glucose) the proteome fractions φP and φR change, but φQ remains
constant; in particular, when the cells are growing on a ”bad” carbon source
(e.g., mannose for E. coli) that yields a slow growth rate, cells upregulate the
expression of proteins in the φP fraction, while on ”good” carbon sources (e.g.,
glucose for E. coli) it’s the ribosomal fraction φR that is upregulated. Fig. 4
shows a schematic representation of this.

These are how the growth laws are written:

φP + φR + φQ = 1 (22a)

φP =
ρ

κn(c)
g (22b)

φR =
ρ

κt
λ+ φ0 (22c)

Here, g is the growth rate, ρ is a conversion factor, κt is called ”translational
capacity” and κn(c) = κn · c/(c+K), where κn is called ”nutritional capacity”
and K is the Monod constant of resource c (we are assuming that the nutrients
are being taken up following Monod’s law). For more detailed information, at-
tend Tuesday’s tutorial or see [26].

The proteome-growth relationships in Eq (22) have been developed for a
single microbial species growing on a single limiting resource. In order to include
these laws in a consumer-resource model, we need to generalize them. The
simplest way to do this for a system of NS consumer species and NR resources
is the following. Considering species σ, we assume that its proteome can be
minimally divided in the three aforementioned sectors, respectively φP

σ , φ
R
σ and

φQ
σ . With more than just one resource in the system, we can think of φP

σ as
being further sub-divided into NR fractions. In other words, we assume that the
proteome of species σ is divided into the fractions φQ

σ , φ
R
σ and the NR fractions

φP
σi (with i = 1, . . . , NR), each one representing the proteome fraction allocated

by species σ for the uptake and metabolization of resource i. A schematic
representation of this assumption is shown in Figure 5.
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Figure 5: Generalization of the proteome subdivision introduced by Scott et al.
[26] to the case of multiple resources. We assume that the sector allocated for
nutrient uptake and metabolization is subdivided into smaller fractions φσi =
φP
σi, each one dedicated to a specific resource

Eq (22a) now reads:

φQ
σ + φR

σ +

NR∑
i=1

φP
σi = 1 . (23)

Then, we rewrite Eq (22b) as:

φP
σi =

ρσ
κn
i (ci)

g(i)σ , (24)

where ρ is considered to be species-dependent, κn
i (ci) = κn

i ·ri(ci) (with ri(ci) =
ci/(Ki + ci)), and gσ

(i) is the contribution to the growth rate of species σ due
to the uptake of resource i. We assume, then, that the uptake of each resource
contributes to the growth of species σ independently of the others, i.e. that the
total growth rate can be written as the sum of these terms6:

gσ =

NR∑
i=1

g(i)σ . (25)

6This assumption is consistent with previous works that considered the proteome allocation
introduced by Scott et al. [26] in systems with two substitutable resources (see [1, Eq (3)], [7,
Eq (S36)]).

14



This implies that we are assuming that the NR resources are substitutable (e.g.,
different carbon sources), otherwise their contribution to the growth rate may
obey an equation with a different form (e.g., their contributions may be mul-
tiplicative rather than additive). Finally, we generalize Eqs (22b) and (22c)
to:

gσ =

NR∑
i=1

κn
i (ci)

ρσ
φP
σi (26a)

φR
σ =

ρσ
κt
σ

gσ + φ0
σ . (26b)

Now we can use Eq (26a) to write Eq (26b) in terms of the fractions φP
σi, and

plug it into Eq (23). By doing so we obtain the generalized normalization
condition:

NR∑
i=1

φσi

[
1 +

κn
i (ci)

κt
σ

]
= 1− φQ

σ − φ0
σ := Φσ , (27)

where we have written φσi instead of φP
σi for simplicity and Φσ is the total

proteome fraction that species σ allocates to metabolism and growth (minus
φ0
σ).

3.2 The “consumer-proteome-resource” equations

We now use a slightly different interpretation of the consumer-resource frame-
work. In particular, we write the general structure of the equations as follows:

ṁσ = mσ(gσ − qσ) σ = 1, . . . , NS (28a)

ċi = si −
NS∑
σ=1

Jσimσ i = 1, . . . , NR , (28b)

where mσ is now the biomass density of species σ and gσ is its growth rate. The
parameter qσ can be interpreted as a maintenance cost, due to the fact that each
species requires a minimum amount of energy per unit time to survive without
growing. Finally, ci is the density of resource i, si is the (constant) resource
supply rate, and Jσi is the rate at which species σ uptakes resource i per unit
biomass.

Since we now have the expression of gσ as a function of the proteome fractions
φσi (i.e., Eq (26a)), in order to write these equations explicitly we need to
introduce some assumptions on the uptake rates Jσi. In particular, we assume
that the uptake rate Jσi of resource i per unit biomass is proportional to φσi,
i.e.:

Jσi = ξiri(ci)φσi , (29)

where the proportionality constant ξi can be interpreted biologically as the
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maximum catalytic rate of the enzyme used to metabolize resource i7. By
comparing Eqs (29) and (24) we can see that the contribution to the growth
rate of species σ due to the uptake of resource i is proportional to its uptake
rate, i.e. gσ

(i) = χσiJσi with

χσiξi =
κn
i

ρσ
. (30)

With all the considerations above, the equations of our model are:

ṁσ = mσ

[
NR∑
i=1

ησiri(ci)φσi − qσ

]
(31a)

ċi = si − ξiri(ci)

NS∑
σ=1

mσφσi (31b)

NR∑
i=1

φσi [1 + γσiri(ci)] = Φσ , (31c)

where we have written explicitly κn
i (ci) = κn

i ri(ci) with ri(ci) = ci/(Ki + ci),
and we have defined ησi := κn

i /ρσ and γσi := κn
i /κ

t
σ to simplify the notation.

A schematic representation of all the assumptions used to write these equations
is shown in Figure 6.

Eqs (31a) and (31b) have the traditional structure of a consumer-resource
model, but have the added advantage of describing population dynamics using
parameters and variables that have a precise biological meaning at the intracel-
lular scale of the system and that can be measured experimentally [26]. In fact,
in the ”classic” consumer resource model (i.e., Eqs (9)) the way each species
grows is determined by the metabolic strategies ασi and by the resources val-
ues vi, which however do not have a clear biological interpretation. Here we
can see that their roles are played by, respectively, the proteome fractions φσi

and the ratio ησi = κn
i /ρσ, which can be both measured in principle. There-

fore, this consumer-proteome-resource model describes community dynamics at
an intermediate level of complexity between classical consumer-resource mod-
els and biochemical models of microbial metabolism [4]. By adopting such an
intermediate level of complexity and realism, we can take into account the dy-
namics of gene expression and microbial metabolism, while preserving analytical

7In fact, Scott et al. [26, Supporting Online Material] give a microscopic interpretation
of the nutritional capacity κn

i by stating that the growth rate of a microbial species is given
by g = qJ , where J is the uptake rate of the (only) resource per unit biomass, and q is a
proportionality constant that depends on the properties of the nutrient (e.g., how much energy
its metabolization can generate). They then assume that there is only one bottleneck enzyme
E for the growth of the microbial species, and write J = kEr(c)φE , where kE is the maximal
catalytic rate of enzyme E, r(c) is Monod’s function, and φE is the fraction of the proteome
occupied by the enzyme E. Compared to our formalism in the general case of NS species
and NR resources (so that J → Jσi and g → gσ), we can identify r(c) → ri(ci), φE → φσi,
q → χσi and finally kE → ξi.
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Figure 6: Schematic representation (analogous to Figure 2) of the assumptions
used to write our consumer-proteome-resource equations, i.e. Eqs (31)

insights on the microbial community dynamics and identifying the key intracel-
lular properties affecting species coexistence.

Eq (31c), on the other hand, is a constraint that all species have to satisfy
at every instant and it is the direct consequence of Eq (23), i.e. the fact that
the quantity of proteins expressed by microbes is limited (or, in other words,
that the fractions of the three aforementioned proteome sectors must sum to
one). In other words, Eq (31c) is the expression of the finiteness of the species’
proteomes. This constraint is significantly different from similar ones that have
been studied in the consumer-resource framework (see, e.g., [25]).

The first important consequence of this constraint derives from the fact that
the coefficients 1 + γσiri(ci) in Eq (31c) are not fixed, but change with time
depending on the system’s dynamics through ri(ci) (i.e., they are a function
of the resources’ concentrations). This implies that for the constraint to be
satisfied at all times, the proteome fractions φσi cannot be fixed but must be,
in turn, dynamical variables: an increase (decrease) of 1 + γσiri(ci) must be
balanced by a decrease (increase) of some of the φσi.

3.3 Dynamics of the proteome fractions

The constraint in Eq (31c) has a simple geometrical interpretation: consider-
ing species σ, the NR-dimensional vector φ⃗σ = (φσ1, . . . , φσNR

) belongs to a
hyperplane whose normal vector n̂σ has components 1 + γσiri(ci). This means
that as the system evolves, the components of n̂σ vary with time and therefore
the hyperplane to which φ⃗σ belongs moves in the NR-dimensional space and
changes orientation. A schematic example for a system with NR = 3 is given
in Fig. 7. The fact that the proteome fractions φσi have to change over time
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Figure 7: Schematic representation of the geometrical interpretation of the con-
straint in Eq (31c). The components of the normal vector n̂σ change with time
as the system evolves (since they are a function of the resource’s concentrations
ci), so the hyperplane on which φ⃗σ lies moves around as the system evolves.

reflects the ability of microbes to vary their enzyme synthesis with time and
switch between nutrients according to environmental conditions.

To write an equation for φ⃗σ we call c⃗ = (c1, . . . , cNR
) the vector of resource

concentrations and define

Fσ(φ⃗σ, c⃗) :=

NR∑
i=1

φσi [1 + γσiri(ci)]− Φσ (32)

so that the constraint given by Eq (31c) can be written more simply as Fσ(φ⃗σ, c⃗) =

0. Since this constraint must hold at every instant, any equation for ˙⃗φσ must
satisfy

Ḟσ(φ⃗σ, c⃗) ≡ ˙⃗φσ · ∇⃗φFσ + ˙⃗c · ∇⃗cFσ = 0 , (33)

where ∇⃗φ and ∇⃗c are, respectively, the gradients taken with respect to the
components of φ⃗σ and c⃗. Therefore, the structure of the “minimal” equation
for φσi, i.e. the one that simply describes the dynamics of φ⃗σ as it moves with
its hyperplane, is:

˙⃗φσ = − ∇⃗φFσ

(∇⃗φFσ)2
˙⃗c · ∇⃗cFσ . (34)
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