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1 Single-locus evolutionary dynamics

In this lecture, we build a single-locus model of evolution inspired by a typical
laboratory setting to introduce basic concepts of evolutionary dynamics: ge-
netic drift and natural selection. We conclude by deriving the diffusion limit of
population genetics for the model and discussing its scope and properties.

This lecture is inspired by Prof. Benjamin H. Good’s course on Quantitative
Evolutionary Dynamics and Genomics at Stanford University [1].

1.1 An experimental setting to study evolution

The ideas we will develop in this lecture can be, in principle, applied to popula-
tions of organisms at any scale. However, we would like to base our theoretical
exploration on experiments. Therefore, something small that reproduces fast
would be the perfect subject. Bacteria check both boxes.

1.1.1 Batch culture

Take a test tube with ∼ 1 ml of growth media containing water, a carbon source
(e.g., some sugar), salts, vitamins, and other ingredients. Then, inoculate with
N0 cells of a laboratory strain of, say, E. Coli. Let it cook (i.e., wait) for a given
time ∆t (e.g., 24 hours), and you will find a number Nf of cells. We can also
measure time in number of generations as ∆t = log2 (Nf/N0).

To measure N0 and Nf , we can look at the population’s growth curve. One
way to track the population is through optical density (OD) measurement. OD
is a measure of turbidity of the test tube, usually achieved by light scattering
using a laser at a wavelength of 600 nm, which does no or little damage to the
cells.

We will also need to track different strains, eventually, a mutated one and
the wild type, for example. OD will not be able to differentiate between the
two; we need other techniques. For example, flow cytometry allows one to count
cells one by one. We can insert a gene producing a fluorescent protein in one
strain and differentiate between strains in this way.

1.1.2 Serial dilution

In order to track evolution, we would like to repeat the procedure in the previous
section many times.

Start with N0 cells and let them grow for a fixed time ∆t. For our purpose,
we will ignore the lag phase and consider ∆tmuch smaller than the time at which
the population exits the exponential growth phase (i.e., before the environment
changes so much it affects growth). This is not necessarily possible in practice,
but we can already get plenty of insights in this simplified scenario. At time t,
the number of cells will be

N(t) = N0e
rt, (1)
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where r is the growth rate. The final number of cells will, therefore, be

Nf = N0e
r∆t. (2)

The growth rate can be measured as

r =
1

∆t
ln

(
Nf

N0

)
. (3)

Now, we dilute the test tube with a dilution factor D. The dilution factor
is a dimensionless number that represents the ratio of the initial volume V of
the test tube’s content over the volume collected VD and combined with fresh
media to fill a new test tube: D = V/VD. A ten-fold dilution, for example,
consists of collecting a tenth of old media and cells and combining it with nine
parts of fresh media. We also have D = Nf/N0.

We want to set the dilution factor in such a way that the expected number
of cells in the fresh tube is N̄0. If we label dilution cycles by k ≡ t/∆t, we can
write that, for every k,

N0(k + 1) ∼ Poisson(N̄0), (4)

i.e., the number of cells at each new cycle is Poisson distributed with average
N̄0. The Poisson distribution emerges because we are sampling a volume VD

from a volume V where the cells are well mixed, i.e., uniformly distributed. This
is the only element of randomness in this lecture, and it comes from sampling.

Serial dilution consists of repeating this growth and dilution procedure as
many times as we need.

Chemostat Another classical experimental setting worth mentioning is the
chemostat. This device allows cells to be maintained at a fixed growth rate con-
tinuously. Bacteria are contained in a vessel with a constant influx of nutrients,
and cells and media are diluted at a fixed rate. Bacteria will reach a population
size where the growth rate is precisely balanced by dilution. We will consider
this setting in the next lecture.

1.2 A single-locus model of evolution

Imagine, now, introducing a mutated strain of E. Coli that differs from the wild
type because of a missing gene. Let us call strain 1 the wild type and strain 2
the mutant. The total population at time t is

N(t) ≡ N1(t) +N2(t), (5)

and we define the relative frequency of the mutant as

f(t) ≡ N2(t)/N(t). (6)

3



Suppose that the missing gene in the mutant allows the processing of a fancy
sugar that is absent from the medium and, therefore, frees up resources for
growth; then we have that strain 2 will grow faster

N1(t) = N1(0)e
rt, (7)

N2(t) = N2(0)e
(r+s)t, (8)

where s > 0 encodes the growth advantage of the mutant.

1.2.1 Allele frequency dynamics

How does the frequency evolve over time? If, at the beginning of the experiment,
the frequency of the mutated allele is f(0), we have

f(∆t) ≡ N2(∆t)

N1(∆t) +N2(∆t)
(9)

=
N0f(0)e

(r+s)∆t

N0(1− f(0))er∆t +N0f(0)e(r+s)∆t
(10)

=
f(0)es∆t

1− f(0) + f(0)es∆t
, (11)

therefore, the number of cells transferred to the fresh tube is distributed as

N2(k + 1) ∼ Poisson

(
N̄0

f(k)es∆t

1− f(k) + f(k)es∆t

)
, (12)

N1(k + 1) ∼ Poisson

(
N̄0

1− f(k)

1− f(k) + f(k)es∆t

)
. (13)

We can finally write the frequency at the beginning of a cycle in terms of the
frequency at the beginning of the previous one

f(k + 1) =
N2(k + 1)

N1(k + 1) +N2(k + 1)
. (14)

We generate a sequence of frequencies at the beginning of each cycle that con-
stitutes a Markov Process in this way (the probability of f(k+1) only depends
on f(k)).

1.2.2 Genetic drift

Let us consider the simple scenario in which the mutation is neutral, meaning
s = 0.

In this case, the dynamics for the two populations are reduced to

N2(k + 1) ∼ Poisson
(
N̄0f(k)

)
, (15)

N1(k + 1) ∼ Poisson
(
N̄0[1− f(k)]

)
, (16)
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and we can derive some system properties. If the frequency at the beginning of
cycle k is f(k), we will have the expected frequency at k + 1 being

E[f(k + 1)] = f(k), (17)

because of the symmetry of the problem 1. This implies that if we start with
an initial mutant frequency f(0),

E[f(k)] = f(0), ∀k, (18)

Now, consider the case in which N̄0f(k) ≫ 1 and N̄0[1− f(k)] ≫ 1 (so that
this is valid also for the wild type), which can be combined in N̄0f(k)[1−f(k)] ≫
1. The Poisson distribution approximates a normal distribution when the mean
is ≫ 1; therefore, we can write Eq. (14) as

f(k + 1) =
N2(k + 1)

N1(k + 1) +N2(k + 1)
=

N2(k + 1)

N(k + 1)
≈

f(k) +
√

f(k)
N̄0

ξN2

1 +
√

1
N̄0

ξN
, (19)

where we used the property that the sum of two Poisson-distributed random
variables is a Poisson-distributed random variable with the mean equal to the
sum of the means of the initial variables and ξN2 and ξN are Gaussian variables
with zero mean and unit variance. Now we Taylor-expand to the first order for
small

√
1/N̄0 and obtain

f(k + 1) ≈ f(k) +

√
f(k)

N̄0
ξN2

−

√
f(k)2

N̄0
ξN = f(k) +

√
f(k)(1− f(k))

N̄0
ξ, (20)

where ξ is a new Gaussian variable with zero mean and unit variance, and we
used the property that the sum of Gaussian variables is a Gaussian variable.

We found that f(k+1) can be approximated by a Gaussian with mean f(k)
(consistent with our previous heuristic argument) and standard deviation of

order
√
1/N̄0

f(k + 1) ≈ f(k) +O
(√

1

N̄0

)
ξ. (21)

The fluctuations around the mean constitute the genetic drift. They are small!
For example, for N̄0 ∼ 105 we have

√
1/N̄0 ∼ 0.3%. However, they can accu-

mulate and lead to drastic scenarios. Indeed, f = 1 and f = 0 correspond to
absorbing states, respectively, associated with the fixation and extinction of the
mutant. After waiting long enough, the system will end in one of the two states,
and the probability of fixation, P(f = 1), can be computed by exploiting the
fact that the average frequency remains constant

E[f(k → ∞)] = 0P(f = 0) + 1P(f = 1) = f(0), (22)

1Notice that, formally, f(k + 1) is the ratio of two Poisson-distributed random variables,
see Eq. (14), and therefore, we cannot obtain an analytical expression for it or even explicitly
compute the average frequency.
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therefore
P(f = 1) = f(0). (23)

But how long is long enough? We have, under specific conditions that we
will discuss better in the last section of this lecture,

f(k) ≈ f(0) +

k∑
i=1

O
(√

1

N̄0

)
ξ = f(0) +O

(√
k

N̄0

)
ξ, (24)

therefore, for f(0) ∼ 1/2, we need k ∼ N̄0. If a k is measured in days and
we consider N̄0 ∼ 105, this means that fixation and extinction start becoming
possibilities after ∼ 300 years! We will see that natural selection plays a more
relevant role at lab scales in these conditions.

1.2.3 Natural selection

Consider now the case in which s > 0 and, for simplicity, N̄0 → ∞, in order to
ignore drift. We have in this case

f(k) =
f(k − 1)es∆t

1− f(k − 1) + f(k − 1)es∆t
(25)

=
f(k − 2)es2∆t

1− f(k − 2) + f(k − 2)es2∆t
(26)

=
f(0)esk∆t

1− f(0) + f(0)esk∆t
. (27)

In terms of generations t ≡ k∆t

f(t) =
f(0)est

1− f(0) + f(0)est
, (28)

which is the solution of the logistic equation

∂f

∂t
= sf(1− f). (29)

The time scale of natural selection is given by t = 1/s. For example, for s = 0.01,
the time scale is t = 100 generations. Considering a 100-fold dilution factor,
which implies ∆t = log2(100) ∼ 6.6 gen/day, this means that we see big changes
after k = t/(∆t) ∼ 2 weeks!

We can also use the definition of s to estimate it by measuring the initial
frequency f(0) and the frequency at time f(t)

s =
1

t
ln

(
f(t)

1− f(t)

1− f(0)

f(0)

)
. (30)

We can call s the fitness difference. Of course, in the case in which s < 0, the
mutant will go extinct.
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1.2.4 Spontaneous mutations

So far, we assumed to introduce a fraction of cells with mutations in a wild-type
population and observe the effects of genetic drift and natural selection on allele
frequency. We introduce now spontaneous, single-target mutation, which causes
the loss of the gene and, therefore, causes the wild-type to mutate.

Let us assume that mutations appear with probability µ per division, with
µ ≪ 1. Let us focus on the cycle in which the mutation first appears. To simplify
the problem, let us assume that the mutation does not bring fitness benefits
before the next cycle (reasonable). By definition, there are ∆t = log2(Nf/N0)
divisions in a cycle, so the probability that a cell at the previous cycle has
acquired a mutation is

P[mutation] = µ∆t. (31)

If we assume that each cell can acquire a mutation independently from the
others, we have that

N2(k + 1) ∼ Poisson(N̄0µ∆t), (32)

N1(k + 1) ∼ Poisson(N̄0(1− µ∆t)). (33)

At this point, we can combine the dynamics we discussed for f(0) > 0 to obtain
the full ”microscopic” model of serial dilution, where we compute

N2(k + 1) ∼ Poisson

(
N̄0

f(k)es∆t

1− f(k) + f(k)es∆t

)
(34)

+ Poisson

(
N̄0µ∆t

1− f(k)

1− f(k) + f(k)es∆t

)
, (35)

N1(k + 1) ∼ Poisson

(
N̄0(1− µ∆t)

1− f(k)

1− f(k) + f(k)es∆t

)
. (36)

and then update the frequency

f(k + 1) =
N2(k + 1)

N1(k + 1) +N2(k + 1)
. (37)

1.3 A glimpse of universality, the diffusion limit of popu-
lation genetics

In the previous sections, we were able to write down the explicit dynamics for
the frequency in terms of time (generations) t only in the case of pure natural
selection with no genetic drift, resulting in the logistic equation (29). The
specific form of the microscopic model of serial dilution makes it so that the
stochasticity cannot easily be dealt with.

In this section, we will derive the diffusion limit of population dynamics for
the microscopic model, highlighting its limits of validity. It will consist of a
Langevin equation which describes the dynamics of the frequency accounting
for both natural selection and genetic drift.
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1.3.1 Coarsening

1.3.2 Derivation

∂f

∂t
= sef(1− f) +

√
f(1− f)

Ne
η(t). (38)

se ≡ s, Ne ≡ N̄0∆t. (39)

1.3.3 Universality

2 Single-locus eco-evolutionary dynamics

Single-locus models of evolution are useful models that can describe certain
observations in experiments and natural populations. But not all observations.
A notable exception is the Long-Term Evolution Experiment (Good, McDonald,
Nature, 2017). ”Simple” experiment with E. coli lasting >70k generations, but
multiple co-existing lineages emerged in 75% (9/12) of replicate populations.

Whatsmore, these lineages are stable. Prior experiments have found that
these strains will return to an intermediate frequency f∗ if perturbed (Plucain
et al., Science, 2014). So, in an evolutionary sense, the sign of the selection coef-
ficient depends on the frequency of the lineage (frequency-dependent selection).
This is a clear qualitative deviation from our model of evolution.

As a step towards understanding how ecology influences evolution, we are
going to

• Incorporate ecology into a model of evolution via the mechanism of com-
petition for substitutable resources.

• Derive a single-locus model of evolution where ecology gives rise to frequency-
dependent fitness

• Investigate (some) eco-evolutionary consequences of resource competition.

∂nµ

∂t
= nµ(gµ(c⃗)−D) +

√
nµ ·D · ηµ(t) (40a)

∂ci
∂t

= Si −Dci −
∑
µ

dµ,i(c⃗)nµ

V
(40b)

⟨ηµ(t)⟩ = 0 (41a)

⟨ηµ(t)ηv(t′)⟩ = δµ,vδ(t− t′) (41b)

Assume growth and depletion have the form
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gµ(c⃗) =
∑
i

bµ,idµ,i(c⃗) (42a)

dµ,i(c⃗) = rµ,iλi(c⃗) (42b)

• V vessel volume

• D dilution rate

• n absolute number of individuals

• gµ(c⃗) function of strain-specific per-capita growth rate

• dµ,i(c⃗) per-capita depletion/consumption rate

• b−1
µ,i yield

• rµ,i species and resource-specific factor (but concentration independent)

• λi(c⃗) species-independent but resource and concentration specific function.

Splitting growth between rµ,i and λi(c⃗) can be viewed as allowing strains to
vary their expression of a pathway, but not substantially change core biochemical
properties (i.e., mutations alter expression of a transporter rather than altering
the pump itself).

Goal: get a Langevin for allele frequencies that incorporates consumer-
resource dynamics. Following steps.

• Sufficiently large large resource fluxed and concentrations: Dci ≈ 0

• Separation of timescales s.t. resource concentrations reach quasi-equilibrium
before abundances substantially change: SiC ≈

∑
µ dµ,i(c⃗)nµ

• bµ,i ≈ bi (necessary for
∑

µ nµ(t) to close), giving us N ≡
∑

i SibiV/D

∂fµ
∂t

= fµ

[∑
i

βiαµ,ie
Xµ∑

v αv,ieXvfv
− 1

]
+
∑
v

[δµ,v − fµ]

√
fv
N

ηv(t) (43)

where we define

ξµ(t) ≡
∑
v

[δµ,v − fµ]
√
fvηv(t) (44)

Where time is in units of D−1

with the following normalized parameters
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βi =
Sibi∑
j Sjbj

, Environmental supply vector (Fraction biomass supplied by resource i)

(45a)

αµ,i =
rµ,i∑
j rµ,i

, Resource strategy (fraction energy spent importing resource i)

(45b)

Xµ = log
∑
i

rµ,i, General fitness (max. growth rate)

(45c)

We can define resource-specific mean fitness

Xi(t) = log

(∑
µ αµ,ie

Xµfµ

βi

)
(46)

Allowing us to re-arrange terms in the Langevin

∂fµ
∂t

= fµ

R∑
i=1

αµ,i

[
eXµ−Xi − 1

]
+

ξµ(t)√
N

(47)

which has the following lowest-order expansion

∂fµ
∂t

≈ fµ

R∑
i=1

αµ,i[Xµ −Xi(t)] +
ξµ(t)√

N
(48)

2.1 Competition for R = 2 resources

2.1.1 Competition between S = 2 strains

Set f ≡ f2 and fitness difference ∆X − X2 − X1, we can obtain an effective
selection coefficient as follows

se(f) ≡
1

f(1− f)

(
∂f

∂t

)
deterministic

(49a)

=
β[α2e

∆X − α1]

α1 + [α2e∆X − α1]f
+

(1− β)[(1− α2)e
∆x − (1− α1)]

1− α1 + f [(1− α2)e∆X − (1− α1)]
(49b)

for the single-locus Langevin

∂f

∂t
= se(f)f(1− f) +

√
f(1− f)

N
η(t) (50)

We now have a model of frequency-dependent selection that is determined
by consumer-resource parameters!
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First, let’s look at the limiting case of invasion of a rare mutant (f → 0).
The invasion fitness reduces to

Sinv ≡ limf→0se(f) (51a)

= e∆x − 1 + e∆x

[
(β − α1)(α2 − α1)

α1(1− α1)

]
(51b)

and the linear Langevin

∂f

∂t
= Sinvf +

√
f

N
η(t) (52)

Which can be used to derive the standard branching process statistics cov-
ered by Onofrio for the regime f ≪ 1. But there are three criteria for the
branching process approximation to apply

NSinv ≫ 1 (53a)

NSinvα1

α2e∆X − α1
≫ 1 (53b)

NSinv

(1− α2)e∆X − (1− α1)
≫ 1 (53c)

Which are met for large N . The invasion criteria Sinv > 0 can be used to
investigate fixation (f = 1) or co-existence at intermediate frequency f∗. Stable
co-existence requires that the reciprocal of the invasion fitness is also positive

SR
inv ≡ limf→1 − se(f) (54a)

= (e−∆X − 1) + e−∆X

[
(β − α2)(α1 − α2)

α2(1− α2)

]
(54b)

at SR
inv = 0 we get the critical fitness threshold

∆Xmax = log

(
1 +

(α1 − α2)(β − α2)

α2(1− α2)

)
(55)

when Sinv > 0 and SR
inv > 0, we can calculate the equilibrium frequency

from se(f
∗) = 0. α2e

∆X −α1 and (1−α2)e
∆X − (1−α1) must have different

signs for non-trivial frequency. We can then solve for f∗. In absence of fitness

differences that frequency is f∗
0 = (β−α1)

∆α . With fitness differences we obtain

f∗ =
f∗
0 +

[
f∗
0 + α1(1−α1)

∆α2

] (
e∆X − 1

)
[
1 + α2

∆α (e∆X − 1)
] [

1− (1−α2)
∆α (e∆X − 1)

] (56)

We can linearize this equation to gain some intuition. As ∆X → 0 and
∆α → 0 we get
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f∗(∆X) ≈ f∗
0 +

β(1− β)

∆α2
·∆X (57)

Fitness sensitivity determined by distance between resource strategies (∆α).
We can then determine fluctuations around equilibrium frequencies δf ≡

f − f∗

At f = f∗ resource-specific mean fitness Xi are independent of β, meaning
that they are independent of environmental conditions!

X1 = −log

[
1− (1− e−∆X)(

1− α2

∆α
)

]
(58a)

X2 = −log
[
1 + (1− e−∆X)(

α2

∆α
)
]

(58b)

when ∆X is small, fitness functions can be linearized

X1 =
(1− α2)

∆α
∆X (59a)

X2 = − α2

∆α
∆X (59b)

Using linearized fitness and linearized f∗, we can obtain a fitness scale over
which f∗(∆X) changes

Xf ≡ f∗(1− f∗)

(
∂f∗

∂∆X

)−1

(60a)

=
(β − α1)(α2 − β)

β(1− β) + (β − α1)(α2 − β)
(60b)

Linearizing around f ≈ f∗, we use our effective single-locus model to get a
Langevin for the fluctuations around the equilibrium frequency

∂δf

∂t
= −Xeqf

∗(1− f∗)δf +

√
f∗(1− f∗)

N
η(t) (61)

where

Xeq(∆X) ≡ −∂se(f)

∂f

∣∣∣
f=f∗

(62)

when ∆X ≪ 1 the Langevin can be solved, obtaining the stationary distri-
bution P (δf) N (0, (2NXeq))

−1/2. So the width of fluctuations decrease with√
Xeq.
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2.1.2 Competition between S = 3 strains

Assume a mutant enters the community, with fitness X3 = ∆X+s and strategy
vector α3. Using the observation that the mutant should never invade if it is
identical to its parent, we can obtain the following invasion fitness.

Sinv = (es − 1) + (α3 − α2)
(
e−X1(t) − e−X2(t)

)
e∆X+s (63)

and examine special cases
1) Neutral. Fluctuations insufficient for strain replacement

∆X = s = 0 (64)

2) Wright-Fisher model. Fixation then competition b/w strains 1 and 2

α3 = α2 (65)

3) Strategy mutant (ecology!)

s = 0 → Sinv =
α3 − α2]

α1 − α2
(e∆X − 1) (66)

Last scenario most ”interesting”. Direction of selection determined by sign
of ∆X. On the fitter lineage (∆X > 0), selection favors mutations that push
the strategy towards β (generalists). In the less-fit background selection favors
mutations that push the strategy away from β (specialists). Commonality: se-
lection favors mutations that lead push a lineage towards consuming resources
consumed by less-fit lineages, minimizing effective competition.

We can understand the outcome of beneficial mutations on the more or less
fit background using our linearized equilibrium frequency equation. Successful
mutations in less-fit lineage always sweep through the lineage, increasing f∗.
Successful mutations in the more-fit lineage have two possibilities: 1) α3 < β →
outcompetes α1 and stabily co-exists with parent α2. 2) β < α3 < α2 sweeps
the parent lineage.

There are multiple possibilities within option 2. If α2 close to α3 then f∗

increases. BUT if α3 is close enough to β that ∆Xmax(α3) becomes less than
∆X then the mutant sweeps both lineages and the ecosystem collapses!

2.2 Many resources: R > 2

In two-resource systems the ecological equilibria are either monocultures (S = 1)
or have the maximum number of strains (S = 2). When S > 2 you can have
stable coexistence for values of 1 < S < R or R = S. Qualitatively different
properties!

2.2.1 Saturated: S = R

Analogous to the R = 2 case. If strains have dissimilar resource strategies, then
Xi is independent of resource supply βi
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2.2.2 Unsaturated: S = R

Resource specific mean fitness is underdetermined Xi, so Xi and f∗
µ must be

jointly solved using non-linear constraints. Convex optimization problem, where

hi = e−Xi

h⃗∗ = argmaxh⃗

{∑
i

βiloghi :
∑
i

αµ,ihi = e−Xµ∀µ

}
(67)

depends on βi! Turns out to be an important difference, as the ecosystem can
no longer dynamically adjust, so internal selection pressures will change as the
environment changes. This detail permits new opportunities for evolutionary
adaptation.
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