Lecture 2: Microbial growth fundamentals
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Minimal models of microbial growth

The principles of microbial growth are critical for building an understanding
of microbial ecology, evolution, and physiology. We start by considering the
simplest possible reasonable model of growth, where a population of n cells
grows at a constant per-capita rate.
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which means that the population is growing exponentially in time: n(t) =
n(0)er. This is a useful model and one can often design experimental conditions
that permit exponential growth to be observed. We note that this model is
phenomenological in nature, meaning that we defined the parameter A\ without
attempting to investigate the underlying mechanisms that control the value of
A

However, when we perform real experiments in flasks we do not observe
exponential growth forever as predicted by the model. Instead, one finds that n
tends to saturate over time, meaning that the CCIT? continues to decrease towards
zero. This saturation is because the formation of biomass requires resources
(e.g., carbon). In a batch culture experiment resources are provided at the
start of the experiment, meaning that their concentration decreases with time
as microbes continue to grow. We will now use this experimental detail to derive
a model of growth where n saturates over time.

We start with a system of ODEs where a microbial population of n cells
consumes a single resource ¢ to grow at rate A(c)
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where Y represents the cell yield per-unit resource. Notice that we have
set the growth rate so that it is now a function of c. This introduction is
necessary, as otherwise the population would grow exponentially forever. You
have now setup an example of what is known in the literature as consumer-
resource models, a fundamental class of ecological models that has provided
considerable insight into the dynamics and structure of communities [1, 2].

We now have to identify an appropriate function for the resource-dependent
growth rate. One finds that the Monod function is usually sufficient for captur-
ing the relationship between growth rate and resource concentration [3].
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where Apax is the maximum possible rate of growth and K is the half-
saturation constant where A(¢)/Amax = % For those interested in the typical
values of K in experimental data see [4]. The Monod function has the following
limiting behavior (Fig. 1):

1. Linear rate of growth when ¢ < K — A(c) & 2maxc

2. Constant rate of growth (exponential) when ¢ > K — A & Apax

We can then derive a form of the ODE %‘ that does not depend on the
resource concentration by:

1. Assuming that the half-saturation constant is sufficiently large relative to
the initial concentration of supplied resources (K > ¢(0)).

2. Using the principle of mass conservation.

This first assumption holds in a batch culture setting because the limiting
resource decreases as a function of time. Under the principle of mass conser-
vation, resources and yield-corrected abundances must sum to a constant total
mass at any given time B = @ + ¢(t). This constraint allows us to obtain a
function for ¢(t). We then obtain the following single differential equation
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where we have defined our final effective parameters in terms of consumer-
resource mechanisms: A = % and K = Y B. The solution to the above ODE
with initial condition n(0) is
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This resulting model is known as the Verhulst model of logistic growth,
and it reproduces the saturating behavior observed in real experiments (Fig. 1).
Therefore, a model of logistic growth can be appropriate for microbial microcosm
experiments under certain conditions. For instance, the half-saturation constant
must be sufficiently large relative to the supplied concentration of resources, a
requirement that can, in principle, be manipulated by the experimenter (you).
It is also necessary to consider properties of growth that we did not include in
the model that would change its qualitative behavior (e.g., death).

A minimal model of enzyme kinetics

Resources are ultimately converted to biomass through biochemical reactions.
The rate at which these reactions occur by themselves (i.e., in an environment
with only the substrate) is typically too low to maintain life. As a solution, cells
produce types of proteins known as enzymes that increase the rate of reaction,
a process known as catalyzation. Cells can also use enzymes to breakdown a
substrate in the environment into a product that can then be used as a resource.
In the next lecture you will learn specific examples of this process, but in order
to model this process it is necessary to derive a general function that describes
the rate of a reaction driven by an enzyme.

In order to derive this function it is necessary to identify the steps of an
enzymatic reaction:

1. The enzyme E attaches to substrate S at rate kq+, forming the complex
E-S

2. The formation of the complex E - S can be reversed at rate ky- (typically
k1+ > kl_



3. The product P is produced from the complex E - S at rate ks, releasing
the enzyme back into the environment while using up the substrate.

In chemistry notation, such a reaction can be written as

k
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But we are interested in a function for the rate of reaction that produces P,
meaning that we are interested in how the concentration of P changes with time
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where [] represents the molar concentration of the variable. To solve this

equation, we notice that we have a forward and reverse reaction in our initial

formula. The formation of the substrate and the complex at steady state can

be understood as the ratio of the reaction rates

[E-S] ks
Eliee 5]~ b ()

where we have denoted the concentration of free enzyme. We now have a
formula for [E - S] that we can plug into our ODE. But often we the concentra-
tion of the enzyme is more difficult to measure or manipulate than that of the
substrate, making it undesirable to retain in our final formula. We can remove
this dependency by invoking the principle of mass balance, as we are assuming
that the experiment is being performed in a closed system.
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which we solve to obtain
[S]
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giving us the ODE
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which we can simplify by defining two phenomenological parameters:

1. The limiting rate of reaction for a fixed [E] as [S] = 00, timax = k2[E]tot

2. The concentration of substrate at which the reaction rate is half of pyax,
k1

known as the Michaelis constant, xk = T
.



giving us

[S]
[S]+ K

You have just derived the Michaelis—Menten model, a fundamental and flex-
ible model of enzyme kinetics [5, 6] (see [7] for various flavors of this model).
This derivation should feel familiar, as we used a similar approach to obtain
a model of logistic growth under a single limiting resource. In addition, the
functional form of this model is the same as the Monod equation of growth,
meaning that it has the same limiting behavior.

p((S]) = LIP) = s (a1

1. Linear rate of reaction when [S] < x — p =~ Fmex[S]

2. Constant rate of reaction when [S] > k — 1 & lmax
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Figure 1: Illustrations of the qualitative behavior of the Monod model of growth
rate and the logistic model of growth.



